Add world generator sources and binary

This commit is contained in:
chelsea
2025-12-02 18:38:45 -06:00
parent 3f92f5add7
commit 2482740b89
10 changed files with 4163 additions and 0 deletions

446
export_mca.py Normal file
View File

@@ -0,0 +1,446 @@
#!/usr/bin/env python3
import argparse
import math
import os
import struct
import time
import zlib
from concurrent.futures import ThreadPoolExecutor, as_completed
from io import BytesIO
from pathlib import Path
cache_dir = Path('.numba_cache').resolve()
cache_dir.mkdir(exist_ok=True)
os.environ.setdefault("NUMBA_CACHE_DIR", str(cache_dir))
from mc import block_ids, worldGen
from settings import PLAYER_POS
TAG_END = 0
TAG_BYTE = 1
TAG_INT = 3
TAG_LONG = 4
TAG_STRING = 8
TAG_LIST = 9
TAG_COMPOUND = 10
TAG_INT_ARRAY = 11
TAG_LONG_ARRAY = 12
DATA_VERSION = 2586 # Minecraft 1.15.2
DEFAULT_RADIUS = 256 # ~512 block diameter (~0.5 km)
CHUNK_HEIGHT = 256
SECTION_COUNT = CHUNK_HEIGHT // 16
BIOME_ID = 1 # Plains
def build_state_mapping():
mapping = {}
def set_state(name, block_name, props=None):
block_id = block_ids.get(name)
if block_id is None:
return
props_tuple = tuple(sorted((props or {}).items()))
mapping[block_id] = (block_name, props_tuple)
set_state("air", "minecraft:air")
set_state("bedrock", "minecraft:bedrock")
set_state("stone", "minecraft:stone")
set_state("dirt", "minecraft:dirt")
set_state("grass", "minecraft:grass_block", {"snowy": "false"})
set_state("water", "minecraft:water", {"level": "0"})
set_state("oak_log", "minecraft:oak_log", {"axis": "y"})
set_state("oak_leaves", "minecraft:oak_leaves", {"distance": "1", "persistent": "false"})
set_state("birch_log", "minecraft:birch_log", {"axis": "y"})
set_state("birch_leaves", "minecraft:birch_leaves", {"distance": "1", "persistent": "false"})
return mapping
BLOCK_STATE_LOOKUP = build_state_mapping()
DEFAULT_AIR_STATE = BLOCK_STATE_LOOKUP[block_ids["air"]]
def to_signed_long(value):
value &= (1 << 64) - 1
if value >= (1 << 63):
value -= 1 << 64
return value
def pack_bits(indices, bits_per_value):
if not indices:
return []
total_bits = len(indices) * bits_per_value
longs_needed = (total_bits + 63) // 64
result = [0] * longs_needed
for idx, value in enumerate(indices):
bit_index = idx * bits_per_value
long_id = bit_index // 64
offset = bit_index % 64
result[long_id] |= value << offset
spill = offset + bits_per_value - 64
if spill > 0:
result[long_id + 1] |= value >> (bits_per_value - spill)
return [to_signed_long(v) for v in result]
def pack_heightmap(values):
return pack_bits(values, 9)
def block_state_from_id(block_id):
return BLOCK_STATE_LOOKUP.get(block_id, DEFAULT_AIR_STATE)
def build_section(chunk_x, chunk_z, section_y, heightmap, tree_blocks):
palette = []
palette_lookup = {}
block_indices = []
has_blocks = False
for y in range(16):
global_y = section_y * 16 + y
if global_y >= CHUNK_HEIGHT:
break
for z in range(16):
global_z = chunk_z * 16 + z
for x in range(16):
global_x = chunk_x * 16 + x
block_id = tree_blocks.get((global_x, global_y, global_z))
if block_id is None:
block_id = worldGen.generateBlock(global_x, global_y, global_z)
state = block_state_from_id(block_id)
key = state
if key not in palette_lookup:
palette_lookup[key] = len(palette)
palette.append(key)
idx = palette_lookup[key]
block_indices.append(idx)
name = state[0]
if name != "minecraft:air":
has_blocks = True
if global_y + 1 > heightmap[x][z]:
heightmap[x][z] = global_y + 1
if not has_blocks:
return None
palette_entries = []
for name, props in palette:
entry = {"Name": name}
if props:
entry["Properties"] = dict(props)
palette_entries.append(entry)
palette_len = max(1, len(palette_entries))
bits = max(4, math.ceil(math.log2(palette_len))) if palette_len > 1 else 4
block_states = pack_bits(block_indices, bits) if block_indices else []
if not block_states:
block_states = [0]
return {
"Y": section_y,
"Palette": palette_entries,
"BlockStates": block_states,
"BlockLight": bytearray(2048),
"SkyLight": bytearray(2048),
}
def build_biome_array():
return [BIOME_ID] * 256
def build_chunk(chunk_x, chunk_z):
heightmap = [[0] * 16 for _ in range(16)]
sections = []
tree_blocks = worldGen.generate_chunk_trees(chunk_x, chunk_z)
for section_y in range(SECTION_COUNT):
section = build_section(chunk_x, chunk_z, section_y, heightmap, tree_blocks)
if section:
sections.append(section)
height_values = []
for z in range(16):
for x in range(16):
height_values.append(heightmap[x][z])
chunk = {
"chunk_x": chunk_x,
"chunk_z": chunk_z,
"sections": sections,
"heightmap": height_values,
"biomes": build_biome_array(),
}
return chunk
def write_string(buffer, value):
encoded = value.encode('utf-8')
buffer.write(struct.pack('>H', len(encoded)))
buffer.write(encoded)
def write_tag_header(buffer, tag_type, name):
buffer.write(bytes([tag_type]))
write_string(buffer, name)
def write_byte(buffer, name, value):
write_tag_header(buffer, TAG_BYTE, name)
buffer.write(struct.pack('>b', value))
def write_int(buffer, name, value):
write_tag_header(buffer, TAG_INT, name)
buffer.write(struct.pack('>i', value))
def write_long(buffer, name, value):
write_tag_header(buffer, TAG_LONG, name)
buffer.write(struct.pack('>q', value))
def write_string_tag(buffer, name, value):
write_tag_header(buffer, TAG_STRING, name)
write_string(buffer, value)
def write_int_array(buffer, name, values):
write_tag_header(buffer, TAG_INT_ARRAY, name)
buffer.write(struct.pack('>i', len(values)))
for val in values:
buffer.write(struct.pack('>i', val))
def write_long_array(buffer, name, values):
write_tag_header(buffer, TAG_LONG_ARRAY, name)
buffer.write(struct.pack('>i', len(values)))
for val in values:
buffer.write(struct.pack('>q', to_signed_long(val)))
def write_byte_array(buffer, name, data):
write_tag_header(buffer, 7, name)
buffer.write(struct.pack('>i', len(data)))
buffer.write(data)
def start_compound(buffer, name):
write_tag_header(buffer, TAG_COMPOUND, name)
def end_compound(buffer):
buffer.write(bytes([TAG_END]))
def write_list(buffer, name, tag_type, items, payload_writer=None):
write_tag_header(buffer, TAG_LIST, name)
if not items:
buffer.write(bytes([TAG_END]))
buffer.write(struct.pack('>i', 0))
return
buffer.write(bytes([tag_type]))
buffer.write(struct.pack('>i', len(items)))
for item in items:
payload_writer(buffer, item)
def write_palette_entry(buffer, entry):
write_string_tag(buffer, "Name", entry["Name"])
props = entry.get("Properties")
if props:
start_compound(buffer, "Properties")
for key, value in props.items():
write_string_tag(buffer, key, value)
end_compound(buffer)
buffer.write(bytes([TAG_END]))
def write_section(buffer, section):
write_byte(buffer, "Y", section["Y"])
write_long_array(buffer, "BlockStates", section["BlockStates"])
write_list(buffer, "Palette", TAG_COMPOUND, section["Palette"], write_palette_entry)
write_byte_array(buffer, "BlockLight", section["BlockLight"])
write_byte_array(buffer, "SkyLight", section["SkyLight"])
buffer.write(bytes([TAG_END]))
def chunk_to_nbt(chunk):
buffer = BytesIO()
start_compound(buffer, "")
write_int(buffer, "DataVersion", DATA_VERSION)
start_compound(buffer, "Level")
write_string_tag(buffer, "Status", "full")
write_long(buffer, "InhabitedTime", 0)
write_long(buffer, "LastUpdate", 0)
write_int(buffer, "xPos", chunk["chunk_x"])
write_int(buffer, "zPos", chunk["chunk_z"])
write_byte(buffer, "isLightOn", 1)
start_compound(buffer, "Heightmaps")
write_long_array(buffer, "MOTION_BLOCKING", chunk["heightmap_packed"])
end_compound(buffer)
write_int_array(buffer, "Biomes", chunk["biomes"])
write_list(buffer, "Sections", TAG_COMPOUND, chunk["sections"], write_section)
write_list(buffer, "Entities", TAG_COMPOUND, [])
write_list(buffer, "TileEntities", TAG_COMPOUND, [])
write_list(buffer, "TileTicks", TAG_COMPOUND, [])
end_compound(buffer)
end_compound(buffer)
return buffer.getvalue()
def assemble_chunk_bytes(chunk):
chunk["heightmap_packed"] = pack_heightmap(chunk["heightmap"])
return chunk_to_nbt(chunk)
def chunk_range(center, radius):
block_min = center - radius
block_max = center + radius
chunk_min = math.floor(block_min / 16)
chunk_max = math.floor(block_max / 16)
return chunk_min, chunk_max
def write_region_file(path, chunks):
offsets = bytearray(4096)
timestamps = bytearray(4096)
body = bytearray()
sector = 2
for index, chunk_bytes in chunks.items():
compressed = zlib.compress(chunk_bytes)
payload = struct.pack('>I', len(compressed) + 1) + bytes([2]) + compressed
padding = (-len(payload)) % 4096
if padding:
payload += b'\x00' * padding
sectors = len(payload) // 4096
offsets[index * 4:index * 4 + 3] = (sector.to_bytes(3, 'big'))
offsets[index * 4 + 3] = sectors
timestamps[index * 4:index * 4 + 4] = struct.pack('>I', int(time.time()))
body.extend(payload)
sector += sectors
data = bytearray(8192)
data[0:4096] = offsets
data[4096:8192] = timestamps
data.extend(body)
path.parent.mkdir(parents=True, exist_ok=True)
path.write_bytes(data)
def export_region_chunks(chunk_map, output_dir):
regions = {}
for (chunk_x, chunk_z), chunk_bytes in chunk_map.items():
region_x = chunk_x >> 5
region_z = chunk_z >> 5
local_x = chunk_x - (region_x << 5)
local_z = chunk_z - (region_z << 5)
index = local_x + local_z * 32
regions.setdefault((region_x, region_z), {})[index] = chunk_bytes
for (region_x, region_z), chunks in regions.items():
file_name = f"r.{region_x}.{region_z}.mca"
write_region_file(output_dir / file_name, chunks)
def parse_args():
parser = argparse.ArgumentParser(description="Export Minecraft chunks to MCA around spawn")
parser.add_argument("--radius", type=int, default=DEFAULT_RADIUS,
help="Export radius in blocks (default: %(default)s)")
parser.add_argument("--output", type=Path, default=Path("exports/mca"),
help="Destination directory for region files")
parser.add_argument("--center-x", type=int, default=None,
help="Override center X position (default: player spawn)")
parser.add_argument("--center-z", type=int, default=None,
help="Override center Z position (default: player spawn)")
parser.add_argument("--workers", type=int, default=os.cpu_count() or 1,
help="Number of worker threads (default: %(default)s)")
parser.add_argument("--minecraft-save", action="store_true",
help="Export to Minecraft saves folder (deletes old region files)")
return parser.parse_args()
def clean_minecraft_region_folder(region_path):
"""Delete all .mca files in the region folder."""
region_path = Path(region_path)
if not region_path.exists():
region_path.mkdir(parents=True, exist_ok=True)
return
mca_files = list(region_path.glob("*.mca"))
for mca_file in mca_files:
mca_file.unlink()
print(f"Deleted {mca_file}")
def process_chunk(args):
chunk_x, chunk_z = args
chunk_data = build_chunk(chunk_x, chunk_z)
chunk_bytes = assemble_chunk_bytes(chunk_data)
return chunk_x, chunk_z, chunk_bytes
def main():
args = parse_args()
center_x = args.center_x if args.center_x is not None else int(PLAYER_POS.x)
center_z = args.center_z if args.center_z is not None else int(PLAYER_POS.z)
radius = args.radius
# Determine output directory
if args.minecraft_save:
output_dir = Path.home() / ".minecraft" / "saves" / "New World (2)" / "region"
print(f"Cleaning Minecraft region folder: {output_dir}")
clean_minecraft_region_folder(output_dir)
else:
output_dir = args.output
chunk_x_min, chunk_x_max = chunk_range(center_x, radius)
chunk_z_min, chunk_z_max = chunk_range(center_z, radius)
chunk_coords = [
(chunk_x, chunk_z)
for chunk_z in range(chunk_z_min, chunk_z_max + 1)
for chunk_x in range(chunk_x_min, chunk_x_max + 1)
]
chunk_bytes_map = {}
total = len(chunk_coords)
if args.workers <= 1:
iterable = map(process_chunk, chunk_coords)
else:
executor = ThreadPoolExecutor(max_workers=args.workers)
futures = [executor.submit(process_chunk, coord) for coord in chunk_coords]
iterable = (future.result() for future in as_completed(futures))
try:
for processed, (chunk_x, chunk_z, chunk_bytes) in enumerate(iterable, start=1):
chunk_bytes_map[(chunk_x, chunk_z)] = chunk_bytes
if processed % 20 == 0 or processed == total:
print(f"Processed {processed}/{total} chunks")
finally:
if 'executor' in locals():
executor.shutdown(wait=True)
export_region_chunks(chunk_bytes_map, output_dir)
print(f"Export complete. Files written to {output_dir}")
if __name__ == "__main__":
main()

709
mc.py Normal file
View File

@@ -0,0 +1,709 @@
import math
import random
from opensimplex import OpenSimplex # OpenSimplex noise for smooth, terrain-like variation
# ---------------------------------------------------------------------------
# BASIC WORLD CONSTANTS
# ---------------------------------------------------------------------------
# Approximate water surface level (everything below may become ocean/lake)
sea_level = 70
# World seed: change this to get a completely different world layout,
# but the same seed always produces the same terrain.
world_seed = 123456
# Create a global OpenSimplex noise generator.
# This object gives us deterministic noise values from coordinates + seed.
noise = OpenSimplex(world_seed)
# Cache column heights so repeated lookups (like water detection) stay cheap.
_height_cache = {}
# Cache derived column data (height + water surface) so generateBlock doesn't
# recompute expensive basin detection for every y in the same column.
_column_data_cache = {}
# Base biome temperatures (you already had this)
biome_base_temps = {
"desert": 110,
"plains": 80,
"plains_river": 80,
"rolling_hills": 75,
}
# Map block "names" to numeric IDs.
# These IDs are what your engine or save format actually uses internally.
# You can change these numbers to match your own block registry.
block_ids = {
"bedrock": 0,
"stone": 1,
"dirt": 2,
"grass": 3,
"water": 4,
"air": 5,
"oak_log": 6,
"oak_leaves": 7,
"birch_log": 8,
"birch_leaves": 9,
"coal": 10,
}
# ---------------------------------------------------------------------------
# ORE GENERATION
# ---------------------------------------------------------------------------
class OreGeneration:
"""Namespace for all ore generation systems"""
class CoalSeams:
"""Coal seam generation - each seam type is independent and combinable"""
# --- Atomic Helper Functions ---
@staticmethod
def _check_point_in_seam(y, seam_center, half_thickness):
"""Atomic: Check if y coordinate is within seam vertical bounds"""
return abs(y - seam_center) <= half_thickness
@staticmethod
def _calculate_seam_offset(x, y, z, scale=0.02, amplitude=2.0):
"""Atomic: Calculate vertical offset for seam undulation using 3D noise"""
return noise.noise3(x * scale, y * scale, z * scale) * amplitude
@staticmethod
def _calculate_thickness_variation(x, z, scale=0.03, amplitude=1.0):
"""Atomic: Calculate thickness variation across horizontal plane using 2D noise"""
return noise.noise2(x * scale, z * scale) * amplitude
@staticmethod
def _check_seam_continuity(x, y, z, threshold=-0.7):
"""Atomic: Determine if seam is solid or pinched out at this point"""
continuity_noise = noise.noise3(x * 0.05, y * 0.05, z * 0.05)
return continuity_noise > threshold
@staticmethod
def _check_seam(x, y, z, center, thickness, undulation_scale=0.02, undulation_amp=2.0,
thickness_scale=0.03, thickness_amp=1.0, continuity_threshold=-0.7):
"""
Generic seam checker - all seam types use this.
Args:
center: Base y-level for seam center
thickness: Base thickness in blocks
undulation_scale/amp: Control vertical wave pattern
thickness_scale/amp: Control horizontal thickness variation
continuity_threshold: Controls gap frequency (higher = fewer gaps)
"""
seam_offset = OreGeneration.CoalSeams._calculate_seam_offset(x, y, z, undulation_scale, undulation_amp)
adjusted_center = center + seam_offset
thickness_variation = OreGeneration.CoalSeams._calculate_thickness_variation(x, z, thickness_scale, thickness_amp)
adjusted_thickness = thickness + thickness_variation
half_thickness = adjusted_thickness / 2.0
if OreGeneration.CoalSeams._check_point_in_seam(y, adjusted_center, half_thickness):
if OreGeneration.CoalSeams._check_seam_continuity(x, y, z, continuity_threshold):
return True
return False
@staticmethod
def _check_flat_ceiling_seam(x, y, z, column_height, ceiling_depth, thickness,
thickness_scale=0.03, thickness_amp=1.0, continuity_threshold=-0.7):
"""
Check for seam with flat ceiling and flat floor (strip mining incentive).
Geometry:
- Ceiling (top): flat at column_height - ceiling_depth
- Floor (bottom): flat at column_height - ceiling_depth - thickness
- Ore exposure: wavy top surface via continuity check
Args:
column_height: Terrain surface height at this x,z
ceiling_depth: Fixed depth below surface for seam ceiling
thickness: Fixed thickness in blocks (no variation)
thickness_scale/amp: Unused (kept for compatibility)
continuity_threshold: Controls gap frequency (higher = fewer gaps)
"""
seam_ceiling = column_height - ceiling_depth
seam_floor = seam_ceiling - thickness
if seam_floor <= y <= seam_ceiling:
if OreGeneration.CoalSeams._check_seam_continuity(x, y, z, continuity_threshold):
return True
return False
@staticmethod
def _check_terrain_relative_seam(x, y, z, column_height, depth_below_surface, thickness,
thickness_scale=0.03, thickness_amp=1.0, continuity_threshold=-0.7):
"""
Check for seam at fixed depth below terrain surface (perfect for strip mining).
Args:
column_height: The terrain surface height at this x,z
depth_below_surface: How many blocks below surface the seam center is
thickness: Base thickness in blocks
thickness_scale/amp: Control horizontal thickness variation
continuity_threshold: Controls gap frequency (higher = fewer gaps)
"""
# Seam follows terrain - always at same depth below surface
seam_center = column_height - depth_below_surface
thickness_variation = OreGeneration.CoalSeams._calculate_thickness_variation(x, z, thickness_scale, thickness_amp)
adjusted_thickness = thickness + thickness_variation
half_thickness = adjusted_thickness / 2.0
if OreGeneration.CoalSeams._check_point_in_seam(y, seam_center, half_thickness):
if OreGeneration.CoalSeams._check_seam_continuity(x, y, z, continuity_threshold):
return True
return False
# --- Individual Seam Types (Combinable) ---
@staticmethod
def deep_seam(x, y, z):
"""Deep seam (y=10-15): 5 blocks thick, for room-and-pillar underground mining"""
return OreGeneration.CoalSeams._check_seam(x, y, z, center=12, thickness=5)
@staticmethod
def medium_seam(x, y, z):
"""Medium seam (y=30-35): 4 blocks thick, standard underground mining depth"""
return OreGeneration.CoalSeams._check_seam(x, y, z, center=32, thickness=4)
@staticmethod
def shallow_mountain_seam(x, y, z):
"""Shallow seam (y=80-90): 3 blocks thick, exposed on mountains for strip/MTR mining"""
return OreGeneration.CoalSeams._check_seam(x, y, z, center=85, thickness=3)
@staticmethod
def shallow_plains_seam(x, y, z):
"""Shallow plains seam (y=45): 2 blocks thick, less undulation"""
return OreGeneration.CoalSeams._check_seam(
x, y, z, center=45, thickness=2,
undulation_scale=0.015, undulation_amp=1.5,
thickness_scale=0.04, thickness_amp=0.5,
continuity_threshold=-0.6 # More continuous
)
@staticmethod
def medium_plains_seam(x, y, z):
"""Medium plains seam (y=25): 3 blocks thick, less undulation"""
return OreGeneration.CoalSeams._check_seam(
x, y, z, center=25, thickness=3,
undulation_scale=0.015, undulation_amp=1.5,
thickness_scale=0.04, thickness_amp=0.5,
continuity_threshold=-0.6 # More continuous
)
@staticmethod
def surface_strip_seam(x, y, z, column_height):
"""
Strip mining seam with flat ceiling at column_height - 5.
West Kentucky accurate: 1 block thick, highly continuous.
Incentivizes leveling terrain to access the ore layer.
"""
return OreGeneration.CoalSeams._check_flat_ceiling_seam(
x, y, z, column_height,
ceiling_depth=5,
thickness=1,
thickness_scale=0.02,
thickness_amp=0.3,
continuity_threshold=-0.3 # Very high continuity, fewer gaps
)
# --- Biome Configurations (which seams are active) ---
BIOME_SEAMS = {
"appalachian": ["deep_seam", "medium_seam", "shallow_mountain_seam", "surface_strip_seam"],
"plains": ["medium_plains_seam", "shallow_plains_seam", "surface_strip_seam"],
"desert": ["deep_seam"], # Only deep seams in desert
"mixed": ["deep_seam", "medium_seam", "medium_plains_seam", "surface_strip_seam"],
}
@staticmethod
def generate_coal(x, y, z, column_height=None, biome="appalachian"):
"""
Main entry point for coal generation.
Checks all seam types active for the given biome.
Args:
x, y, z: Block coordinates
column_height: Terrain surface height (needed for terrain-relative seams)
biome: Biome name (e.g., "appalachian", "plains", "desert")
Returns:
True if coal should be placed at this location, False otherwise
"""
# Get seam types for this biome (default to appalachian)
seam_types = OreGeneration.CoalSeams.BIOME_SEAMS.get(biome, ["deep_seam", "medium_seam", "shallow_mountain_seam", "surface_strip_seam"])
# Check each active seam type
for seam_name in seam_types:
seam_func = getattr(OreGeneration.CoalSeams, seam_name, None)
if seam_func:
# Handle terrain-relative seams that need column_height
if seam_name == "surface_strip_seam":
if column_height is not None and seam_func(x, y, z, column_height):
return True
else:
# Standard fixed-depth seams
if seam_func(x, y, z):
return True
return False
# ---------------------------------------------------------------------------
# WORLD GENERATION
# ---------------------------------------------------------------------------
class worldGen:
# minimum bowl depth needed before we consider it a lake candidate
BASIN_MIN_DEPTH = 4
# how far around a column we scan to estimate its bowl rim
BASIN_RADIUS = 4
# Tree placement tuning
TREE_GRID_SPACING = 6 # coarse grid to enforce spacing
TREE_MARGIN = 3 # how far outside the chunk we look for trunks (so crowns don't cut off)
MIN_TREE_ALT = sea_level - 2
LOW_FADE_TOP = sea_level + 6
TREE_LINE = sea_level + 60
TREE_LINE_FADE = 20
MAX_SLOPE = 2
@staticmethod
def getBlockID(block_name: str) -> int:
"""
Convert a human-readable block name (e.g. "grass") into a numeric ID.
If the name isn't found, we default to "air" so we don't crash.
In a real engine, you'd probably want to raise an error instead.
"""
return block_ids.get(block_name, block_ids["air"])
@staticmethod
def _get_column_height(x: int, z: int) -> int:
key = (x, z)
if key in _height_cache:
return _height_cache[key]
# DOMAIN WARPING - Keep this the same
warp1_x = x + noise.noise2(x * 0.001, z * 0.001) * 50
warp1_z = z + noise.noise2((x+1000) * 0.001, (z+1000) * 0.001) * 50
warp2_x = warp1_x + noise.noise2(warp1_x * 0.01, warp1_z * 0.01) * 10
warp2_z = warp1_z + noise.noise2((warp1_x+500) * 0.01, (warp1_z+500) * 0.01) * 10
base_height = sea_level - 5
height = base_height
# KEEP THESE - Large scale features (mountains, valleys)
height += noise.noise2(warp2_x * 0.0005, warp2_z * 0.0005) * 80
height += noise.noise2(warp2_x * 0.002, warp2_z * 0.002) * 40
height += noise.noise2(warp2_x * 0.005, warp2_z * 0.005) * 25
height += noise.noise2(warp2_x * 0.01, warp2_z * 0.01) * 15
# REDUCE OR REMOVE THESE - Small scale bumps and roughness
height += noise.noise2(warp2_x * 0.02, warp2_z * 0.02) * 5 # Was 10
height += noise.noise2(warp2_x * 0.05, warp2_z * 0.05) * 2 # Was 6
height += noise.noise2(warp2_x * 0.1, warp2_z * 0.1) * 1 # Was 3
# height += noise.noise2(warp2_x * 0.2, warp2_z * 0.2) * 1 # REMOVE - too rough
_height_cache[key] = int(height)
return int(height)
@staticmethod
def _estimate_basin_water_surface(x: int, z: int, column_height: int):
"""Look for local bowls and return a rim height if one exists."""
samples = []
for dx in range(-worldGen.BASIN_RADIUS, worldGen.BASIN_RADIUS + 1):
for dz in range(-worldGen.BASIN_RADIUS, worldGen.BASIN_RADIUS + 1):
if dx == 0 and dz == 0:
continue
samples.append(worldGen._get_column_height(x + dx, z + dz))
if not samples:
return None
rim_height = min(samples)
if rim_height - column_height < worldGen.BASIN_MIN_DEPTH:
return None
return rim_height
@staticmethod
def _get_column_data(x: int, z: int):
key = (x, z)
cached = _column_data_cache.get(key)
if cached:
return cached
column_height = worldGen._get_column_height(x, z)
basin_surface = worldGen._estimate_basin_water_surface(x, z, column_height)
if basin_surface is not None:
water_surface_y = basin_surface
elif column_height < sea_level:
water_surface_y = sea_level
else:
water_surface_y = None
data = (column_height, water_surface_y)
_column_data_cache[key] = data
return data
@staticmethod
def generateBlock(x: int, y: int, z: int) -> int:
"""
Determine which block ID should exist at world coordinates (x, y, z).
This uses:
- A noise-based heightmap (via OpenSimplex) to decide terrain surface.
- Simple layering rules for stone/dirt/grass.
- sea_level to decide where water goes.
"""
# -------------------------------------------------------------------
# 1. BEDROCK LAYER
# -------------------------------------------------------------------
# We force a solid bedrock floor at the bottom of the world.
# You can change "0" to something else if you want a thicker bedrock band.
if y == 0:
return worldGen.getBlockID("bedrock")
# -------------------------------------------------------------------
# 2. TERRAIN HEIGHT FOR THIS (x, z) COLUMN
# -------------------------------------------------------------------
column_height, water_surface_y = worldGen._get_column_data(x, z)
# -------------------------------------------------------------------
# 3. WATER LEVEL LOGIC
# -------------------------------------------------------------------
# First, try finding a local bowl and fill it to the rim. If no bowl
# exists, fall back to the global sea_level rule for oceans.
# (handled inside _get_column_data now)
# -------------------------------------------------------------------
# 4. BLOCK SELECTION BY VERTICAL POSITION
# -------------------------------------------------------------------
# We now choose the block type based on how y compares to:
# - column_height (terrain surface)
# - water_surface_y (ocean/lake surface)
#
# Basic layering:
# - Bedrock at y <= 0 (we already handled this above)
# - From y=1 up to terrain surface - 4: stone
# - Next 3 layers under the surface: dirt
# - Surface: grass (if above water), or sand/etc. if you add biomes later
# - Between terrain surface and water surface: water
# - Above water surface: air
# 4a. Terrain below the ground surface => underground blocks
if y < column_height - 3:
# Check for coal seams first (pass column_height for terrain-relative seams)
if OreGeneration.generate_coal(x, y, z, column_height=column_height, biome="appalachian"):
return worldGen.getBlockID("coal")
# Deep underground: solid stone
return worldGen.getBlockID("stone")
if y < column_height:
# Just under the surface: a few layers of dirt
return worldGen.getBlockID("dirt")
# 4b. Exactly at the terrain surface
if y == column_height:
# If this position is also *below* sea level, we might prefer sand or
# some other block later depending on biome and proximity to water.
# For now, always grass as your basic "land" surface.
return worldGen.getBlockID("grass")
# 4c. Above the terrain surface but below water surface => water column
if water_surface_y is not None and y <= water_surface_y and y > column_height:
# This is underwater. A simple ocean/lake fill.
return worldGen.getBlockID("water")
# 4d. Everything else is air
return worldGen.getBlockID("air")
@staticmethod
def _can_place_tree(x: int, y: int, z: int, height: int) -> bool:
"""
Check if there's enough space to place a tree.
- Must be on grass block
- Must have air above for tree height + crown
"""
ground_block = worldGen.generateBlock(x, y - 1, z)
if ground_block != worldGen.getBlockID("grass"):
return False
for check_y in range(y, y + height + 3):
if worldGen.generateBlock(x, check_y, z) != worldGen.getBlockID("air"):
return False
return True
@staticmethod
def _tree_density_mask(x: int, z: int) -> float:
"""Blend two low-frequency noises to drive forest clumping."""
forest = noise.noise2((x + 3000) * 0.01, (z - 3000) * 0.01)
moisture = noise.noise2((x - 5000) * 0.02, (z + 5000) * 0.02)
return (forest * 0.6 + moisture * 0.4 + 1.0) * 0.5 # normalize to ~0..1
@staticmethod
def _ground_slope(x: int, z: int) -> int:
center = worldGen._get_column_height(x, z)
max_delta = 0
for dx, dz in ((1, 0), (-1, 0), (0, 1), (0, -1)):
neighbor = worldGen._get_column_height(x + dx, z + dz)
max_delta = max(max_delta, abs(neighbor - center))
return max_delta
@staticmethod
def _generate_oak_tree(x: int, y: int, z: int, variation: int = 0, rng: random.Random = None):
"""
Generate an oak tree structure.
Returns a list of (x, y, z, block_id) tuples.
variation: 0-2 for small/medium/large trees
"""
if rng is None:
rng = random
blocks = []
log_id = worldGen.getBlockID("oak_log")
leaf_id = worldGen.getBlockID("oak_leaves")
trunk_height = 4 + variation + rng.randint(0, 2)
# Build trunk
for dy in range(trunk_height):
blocks.append((x, y + dy, z, log_id))
# Crown starting height
crown_start = y + trunk_height - 2
crown_top = y + trunk_height + 2
# Build leaf crown (roughly spherical)
for cy in range(crown_start, crown_top):
distance_from_center = abs(cy - (crown_start + 2))
if distance_from_center == 0:
radius = 2
elif distance_from_center == 1:
radius = 2
elif distance_from_center == 2:
radius = 1
else:
radius = 1
# Place leaves in a circle
for dx in range(-radius, radius + 1):
for dz in range(-radius, radius + 1):
if abs(dx) == radius and abs(dz) == radius:
if rng.random() > 0.3:
continue
if dx == 0 and dz == 0 and cy < y + trunk_height:
continue
blocks.append((x + dx, cy, z + dz, leaf_id))
return blocks
@staticmethod
def _generate_birch_tree(x: int, y: int, z: int, rng: random.Random = None):
"""
Generate a birch tree structure (taller, thinner than oak).
Returns a list of (x, y, z, block_id) tuples.
"""
if rng is None:
rng = random
blocks = []
log_id = worldGen.getBlockID("birch_log")
leaf_id = worldGen.getBlockID("birch_leaves")
trunk_height = 5 + rng.randint(0, 3)
# Build trunk
for dy in range(trunk_height):
blocks.append((x, y + dy, z, log_id))
# Smaller, higher crown
crown_start = y + trunk_height - 1
crown_top = y + trunk_height + 2
for cy in range(crown_start, crown_top):
distance_from_top = crown_top - cy
if distance_from_top <= 1:
radius = 1
else:
radius = 2
for dx in range(-radius, radius + 1):
for dz in range(-radius, radius + 1):
if abs(dx) + abs(dz) > radius + 1:
continue
if dx == 0 and dz == 0 and cy < y + trunk_height:
continue
blocks.append((x + dx, cy, z + dz, leaf_id))
return blocks
@staticmethod
def generateTree(x: int, y: int, z: int, tree_type: str = "oak", variation: int = None, rng: random.Random = None):
"""
Main tree generation function.
Args:
x, y, z: Base coordinates for tree trunk
tree_type: "oak" or "birch"
variation: For oak trees, 0-2 for size variation
rng: optional random.Random for deterministic per-tree variation
Returns:
List of (x, y, z, block_id) tuples, or None if can't place
"""
if rng is None:
rng = random
if tree_type == "oak":
if variation is None:
variation = rng.randint(0, 2)
if not worldGen._can_place_tree(x, y, z, 4 + variation):
return None
return worldGen._generate_oak_tree(x, y, z, variation, rng)
elif tree_type == "birch":
if not worldGen._can_place_tree(x, y, z, 6):
return None
return worldGen._generate_birch_tree(x, y, z, rng)
return None
@staticmethod
def generate_chunk_trees(chunk_x: int, chunk_z: int):
"""
Populate trees for a chunk (including a small margin so crowns don't cut off).
Returns a dict keyed by (x, y, z) with block IDs to overlay on terrain.
"""
tree_blocks = {}
grid = worldGen.TREE_GRID_SPACING
margin = worldGen.TREE_MARGIN
chunk_min_x = chunk_x * 16 - margin
chunk_max_x = chunk_min_x + 16 + 2 * margin - 1
chunk_min_z = chunk_z * 16 - margin
chunk_max_z = chunk_min_z + 16 + 2 * margin - 1
grid_min_x = math.floor(chunk_min_x / grid)
grid_max_x = math.floor(chunk_max_x / grid)
grid_min_z = math.floor(chunk_min_z / grid)
grid_max_z = math.floor(chunk_max_z / grid)
for gx in range(grid_min_x, grid_max_x + 1):
for gz in range(grid_min_z, grid_max_z + 1):
rng = random.Random(world_seed + gx * 341873128712 + gz * 132897987541)
candidate_x = gx * grid + rng.randint(0, grid - 1)
candidate_z = gz * grid + rng.randint(0, grid - 1)
# Only consider trunks that could affect this chunk (with margin)
if not (chunk_min_x <= candidate_x <= chunk_max_x and chunk_min_z <= candidate_z <= chunk_max_z):
continue
column_height, water_surface_y = worldGen._get_column_data(candidate_x, candidate_z)
# Avoid underwater or flooded tiles
if water_surface_y is not None and column_height < water_surface_y:
continue
# Elevation gates
if column_height < worldGen.MIN_TREE_ALT or column_height > worldGen.TREE_LINE:
continue
# Slope gate to keep cliffs and sharp ridges clear
if worldGen._ground_slope(candidate_x, candidate_z) > worldGen.MAX_SLOPE:
continue
altitude_factor = 1.0
# Fade near shore/marsh
if column_height < worldGen.LOW_FADE_TOP:
fade_span = max(1, worldGen.LOW_FADE_TOP - worldGen.MIN_TREE_ALT)
altitude_factor *= max(0.0, (column_height - worldGen.MIN_TREE_ALT) / fade_span)
# Fade near tree line
if column_height > worldGen.TREE_LINE - worldGen.TREE_LINE_FADE:
altitude_factor *= max(0.0, (worldGen.TREE_LINE - column_height) / worldGen.TREE_LINE_FADE)
if altitude_factor <= 0:
continue
density = worldGen._tree_density_mask(candidate_x, candidate_z)
base_prob = 0.5
spawn_prob = base_prob * (0.6 + 0.4 * density) * altitude_factor
if rng.random() > spawn_prob:
continue
# Cooler, higher ground skews to birch
if column_height > sea_level + 35:
tree_type = "birch" if rng.random() < 0.7 else "oak"
elif column_height > sea_level + 15:
tree_type = "oak" if rng.random() < 0.7 else "birch"
else:
tree_type = "oak"
tree = worldGen.generateTree(
candidate_x,
column_height + 1,
candidate_z,
tree_type=tree_type,
variation=None,
rng=rng,
)
if not tree:
continue
for bx, by, bz, block_id in tree:
# Only apply blocks that fall inside this chunk
if chunk_x * 16 <= bx <= chunk_x * 16 + 15 and chunk_z * 16 <= bz <= chunk_z * 16 + 15:
if 0 <= by < 256:
tree_blocks[(bx, by, bz)] = block_id
return tree_blocks
# ---------------------------------------------------------------------------
# BIOME / TEMPERATURE FUNCTIONS (your original, with a small bug fix)
# ---------------------------------------------------------------------------
class biomeFuncs:
@staticmethod
def get_current_block_tmep(x, y, z):
# TODO: You can later use height, biome, time, etc. to get the exact
# temperature at this block. For now it's just a stub.
#remember to account for things getting cooler/hotter as we dig.
pass
@staticmethod
def get_current_biome_temp(biome, time, season):
"""
Compute the current temperature for a given biome at a given time/season.
NOTE: I fixed a small bug:
- You were looping "for biome in biome_base_temps" which overwrote
the biome parameter and always ended with the last one.
- Now we just look up the base temp directly from the biome argument.
"""
# Get base temperature for the biome (e.g. plains: 80)
base_temp = biome_base_temps.get(biome, 70) # default 70 if biome unknown
# Calculate weather adjustments based on biome and season
standardWeatherAdjustment = 0
weatherVariabilityFactor = 0
if biome == "desert":
if season == "winter":
standardWeatherAdjustment = -30
elif season == "fall":
standardWeatherAdjustment = -10
elif season == "summer":
standardWeatherAdjustment = +10
elif season == "spring":
standardWeatherAdjustment = 0
weatherVariabilityFactor = random.randint(-20, 20)
elif biome == "plains":
if season == "winter":
standardWeatherAdjustment = -25
elif season == "fall":
standardWeatherAdjustment = -5
elif season == "summer":
standardWeatherAdjustment = +5
elif season == "spring":
standardWeatherAdjustment = 0
weatherVariabilityFactor = random.randint(-15, 15)
elif biome == "plains_river":
if season == "winter":
standardWeatherAdjustment = -20
elif season == "fall":
standardWeatherAdjustment = -3
elif season == "summer":
standardWeatherAdjustment = +3
elif season == "spring":
standardWeatherAdjustment = 0
weatherVariabilityFactor = random.randint(-10, 10)
elif biome == "rolling_hills":
if season == "winter":
standardWeatherAdjustment = -28
elif season == "fall":
standardWeatherAdjustment = -7
elif season == "summer":
standardWeatherAdjustment = +7
elif season == "spring":
standardWeatherAdjustment = 0
weatherVariabilityFactor = random.randint(-18, 18)
# -------------------------------------------------------------------
# TIME-OF-DAY TEMPERATURE ADJUSTMENT (your original logic)
# -------------------------------------------------------------------
time_adjustment = 0
# Convert time (024000 ticks) into a "Minecraft hour" in [0, 24).
# 0 ticks = 6am, 6000 = 12pm, 12000 = 6pm, 18000 = 12am
minecraft_hour = (time / 1000 + 6) % 24
if 6 <= minecraft_hour < 14: # Morning to peak heat
time_progress = (minecraft_hour - 6) / 8 # 0..1
time_adjustment = time_progress * 15 # 0..+15
elif 14 <= minecraft_hour < 20: # Afternoon to evening
time_progress = (minecraft_hour - 14) / 6 # 0..1
time_adjustment = 15 - (time_progress * 12) # +15..+3
elif 20 <= minecraft_hour < 24: # Evening to midnight
time_progress = (minecraft_hour - 20) / 4 # 0..1
time_adjustment = 3 - (time_progress * 8) # +3..-5
else: # Midnight to morning (0-6)
time_progress = minecraft_hour / 6 # 0..1
time_adjustment = -5 + (time_progress * 5) # -5..0
# Apply biome-specific time modifiers
if biome == "desert":
time_adjustment *= 1.5 # Deserts have more extreme swings
elif biome == "plains_river":
time_adjustment *= 0.7 # Rivers moderate temperature changes
# Final temperature
temp = base_temp + standardWeatherAdjustment + weatherVariabilityFactor + time_adjustment
return temp

83
settings.py Normal file
View File

@@ -0,0 +1,83 @@
from numba import njit
import numpy as np
import glm
import math
# OpenGL settings
MAJOR_VER, MINOR_VER = 3, 3
DEPTH_SIZE = 24
NUM_SAMPLES = 1 # antialiasing
# resolution
WIN_RES = glm.vec2(1600, 900)
# world generation
SEED = 16
# ray casting
MAX_RAY_DIST = 6
# chunk
CHUNK_SIZE = 48
H_CHUNK_SIZE = CHUNK_SIZE // 2
CHUNK_AREA = CHUNK_SIZE * CHUNK_SIZE
CHUNK_VOL = CHUNK_AREA * CHUNK_SIZE
CHUNK_SPHERE_RADIUS = H_CHUNK_SIZE * math.sqrt(3)
# world
WORLD_W, WORLD_H = 20, 2
WORLD_D = WORLD_W
WORLD_AREA = WORLD_W * WORLD_D
WORLD_VOL = WORLD_AREA * WORLD_H
# world center
CENTER_XZ = WORLD_W * H_CHUNK_SIZE
CENTER_Y = WORLD_H * H_CHUNK_SIZE
# camera
ASPECT_RATIO = WIN_RES.x / WIN_RES.y
FOV_DEG = 50
V_FOV = glm.radians(FOV_DEG) # vertical FOV
H_FOV = 2 * math.atan(math.tan(V_FOV * 0.5) * ASPECT_RATIO) # horizontal FOV
NEAR = 0.1
FAR = 2000.0
PITCH_MAX = glm.radians(89)
# player
PLAYER_SPEED = 0.005
PLAYER_ROT_SPEED = 0.003
# PLAYER_POS = glm.vec3(CENTER_XZ, WORLD_H * CHUNK_SIZE, CENTER_XZ)
PLAYER_POS = glm.vec3(CENTER_XZ, CHUNK_SIZE, CENTER_XZ)
MOUSE_SENSITIVITY = 0.002
# colors
BG_COLOR = glm.vec3(0.58, 0.83, 0.99)
# textures
SAND = 1
GRASS = 2
DIRT = 3
STONE = 4
SNOW = 5
LEAVES = 6
WOOD = 7
# terrain levels
SNOW_LVL = 54
STONE_LVL = 49
DIRT_LVL = 40
GRASS_LVL = 8
SAND_LVL = 7
# tree settings
TREE_PROBABILITY = 0.02
TREE_WIDTH, TREE_HEIGHT = 4, 8
TREE_H_WIDTH, TREE_H_HEIGHT = TREE_WIDTH // 2, TREE_HEIGHT // 2
# water
WATER_LINE = 5.6
WATER_AREA = 5 * CHUNK_SIZE * WORLD_W
# cloud
CLOUD_SCALE = 25
CLOUD_HEIGHT = WORLD_H * CHUNK_SIZE * 2

22
worldgen-c/Makefile Normal file
View File

@@ -0,0 +1,22 @@
CC ?= gcc
CFLAGS ?= -O3 -march=native -std=c11 -Wall -Wextra -pedantic -Iinclude
LDFLAGS ?= -lm -pthread -lz
SRC := src/main.c src/worldgen.c src/noise.c
OBJ := $(SRC:.c=.o)
BIN_DIR := bin
TARGET := $(BIN_DIR)/worldgen
all: $(TARGET)
$(TARGET): $(OBJ) | $(BIN_DIR)
$(CC) $(CFLAGS) $(OBJ) -o $@ $(LDFLAGS)
$(BIN_DIR):
mkdir -p $(BIN_DIR)
clean:
rm -f $(OBJ) $(TARGET)
.PHONY: all clean

BIN
worldgen-c/bin/worldgen Executable file

Binary file not shown.

View File

@@ -0,0 +1,14 @@
#ifndef WORLDGEN_NOISE_H
#define WORLDGEN_NOISE_H
#include <stdint.h>
typedef struct {
int perm[512];
} simplex_noise;
void simplex_init(simplex_noise *noise, uint32_t seed);
double simplex_noise2(simplex_noise *noise, double x, double y);
double simplex_noise3(simplex_noise *noise, double x, double y, double z);
#endif

View File

@@ -0,0 +1,52 @@
#ifndef WORLDGEN_H
#define WORLDGEN_H
#include <stddef.h>
#include <stdint.h>
#include "noise.h"
#define CHUNK_SIZE 16
#define CHUNK_HEIGHT 256
enum BlockId {
BLOCK_BEDROCK = 0,
BLOCK_STONE = 1,
BLOCK_DIRT = 2,
BLOCK_GRASS = 3,
BLOCK_WATER = 4,
BLOCK_AIR = 5,
BLOCK_OAK_LOG = 6,
BLOCK_OAK_LEAVES = 7,
BLOCK_BIRCH_LOG = 8,
BLOCK_BIRCH_LEAVES = 9,
BLOCK_COAL = 10,
BLOCK_SAND = 11,
BLOCK_GRAVEL = 12,
BLOCK_SNOW = 13,
BLOCK_TALL_GRASS = 14
};
struct trail_segment;
typedef struct {
int chunk_x;
int chunk_z;
uint16_t heightmap[CHUNK_SIZE][CHUNK_SIZE];
uint16_t blocks[CHUNK_HEIGHT][CHUNK_SIZE][CHUNK_SIZE];
} chunk_data;
typedef struct {
simplex_noise noise;
int sea_level;
int world_seed;
int enable_trails;
int snow_line;
struct trail_segment *trail_segments;
size_t trail_segment_count;
size_t trail_segment_cap;
} worldgen_ctx;
void worldgen_init(worldgen_ctx *ctx, int world_seed, int sea_level, int snow_line);
void worldgen_generate_chunk(worldgen_ctx *ctx, int chunk_x, int chunk_z, chunk_data *out);
#endif

818
worldgen-c/src/main.c Normal file
View File

@@ -0,0 +1,818 @@
#include "worldgen.h"
#include <errno.h>
#include <math.h>
#include <limits.h>
#include <pthread.h>
#include <stdatomic.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <zlib.h>
#ifndef PATH_MAX
#define PATH_MAX 4096
#endif
typedef struct {
int x;
int z;
} chunk_coord;
typedef struct {
int chunk_x;
int chunk_z;
chunk_data data;
} completed_chunk;
typedef struct {
completed_chunk *chunks;
size_t capacity;
_Atomic size_t count;
pthread_mutex_t mutex;
} results_buffer;
typedef struct {
chunk_coord *items;
size_t count;
_Atomic size_t next_index;
_Atomic size_t done;
} job_queue;
typedef struct {
job_queue *queue;
const char *out_dir;
int world_seed;
int sea_level;
int snow_line;
pthread_mutex_t *log_mu;
int enable_trails;
results_buffer *results;
} worker_args;
typedef enum {
FORMAT_MCA,
FORMAT_BIN
} output_format;
// ---------------------------------------------------------------------------
// Block state palette (fixed mapping for our limited block set)
// ---------------------------------------------------------------------------
typedef struct {
const char *key;
const char *value;
} kv_pair;
typedef struct {
const char *name;
const kv_pair *props;
size_t prop_count;
} block_state;
static const kv_pair PROPS_LOG_AXIS[] = {{"axis", "y"}};
static const kv_pair PROPS_GRASS[] = {{"snowy", "false"}};
static const kv_pair PROPS_WATER[] = {{"level", "0"}};
static const kv_pair PROPS_LEAVES[] = {{"distance", "1"}, {"persistent", "false"}};
static const block_state BLOCK_STATE_TABLE[] = {
[BLOCK_BEDROCK] = {"minecraft:bedrock", NULL, 0},
[BLOCK_STONE] = {"minecraft:stone", NULL, 0},
[BLOCK_DIRT] = {"minecraft:dirt", NULL, 0},
[BLOCK_GRASS] = {"minecraft:grass_block", PROPS_GRASS, 1},
[BLOCK_WATER] = {"minecraft:water", PROPS_WATER, 1},
[BLOCK_AIR] = {"minecraft:air", NULL, 0},
[BLOCK_OAK_LOG] = {"minecraft:oak_log", PROPS_LOG_AXIS, 1},
[BLOCK_OAK_LEAVES] = {"minecraft:oak_leaves", PROPS_LEAVES, 2},
[BLOCK_BIRCH_LOG] = {"minecraft:birch_log", PROPS_LOG_AXIS, 1},
[BLOCK_BIRCH_LEAVES] = {"minecraft:birch_leaves", PROPS_LEAVES, 2},
[BLOCK_COAL] = {"minecraft:coal_ore", NULL, 0},
[BLOCK_SAND] = {"minecraft:sand", NULL, 0},
[BLOCK_GRAVEL] = {"minecraft:gravel", NULL, 0},
[BLOCK_SNOW] = {"minecraft:snow", NULL, 0},
[BLOCK_TALL_GRASS] = {"minecraft:grass", NULL, 0}
};
static const block_state *get_block_state(uint16_t id) {
if (id < sizeof(BLOCK_STATE_TABLE) / sizeof(BLOCK_STATE_TABLE[0]) && BLOCK_STATE_TABLE[id].name) {
return &BLOCK_STATE_TABLE[id];
}
return &BLOCK_STATE_TABLE[BLOCK_AIR];
}
// ---------------------------------------------------------------------------
// Dynamic byte buffer helpers
// ---------------------------------------------------------------------------
typedef struct {
uint8_t *data;
size_t len;
size_t cap;
} buf;
static void buf_reserve(buf *b, size_t extra) {
size_t need = b->len + extra;
if (need <= b->cap) return;
size_t new_cap = b->cap ? b->cap * 2 : 1024;
while (new_cap < need) new_cap *= 2;
uint8_t *new_data = (uint8_t *)realloc(b->data, new_cap);
if (!new_data) return;
b->data = new_data;
b->cap = new_cap;
}
static void buf_put_u8(buf *b, uint8_t v) {
buf_reserve(b, 1);
b->data[b->len++] = v;
}
static void buf_put_be16(buf *b, uint16_t v) {
buf_reserve(b, 2);
b->data[b->len++] = (uint8_t)(v >> 8);
b->data[b->len++] = (uint8_t)(v & 0xFF);
}
static void buf_put_be32(buf *b, uint32_t v) {
buf_reserve(b, 4);
b->data[b->len++] = (uint8_t)(v >> 24);
b->data[b->len++] = (uint8_t)((v >> 16) & 0xFF);
b->data[b->len++] = (uint8_t)((v >> 8) & 0xFF);
b->data[b->len++] = (uint8_t)(v & 0xFF);
}
static void buf_put_be64(buf *b, uint64_t v) {
buf_reserve(b, 8);
b->data[b->len++] = (uint8_t)(v >> 56);
b->data[b->len++] = (uint8_t)((v >> 48) & 0xFF);
b->data[b->len++] = (uint8_t)((v >> 40) & 0xFF);
b->data[b->len++] = (uint8_t)((v >> 32) & 0xFF);
b->data[b->len++] = (uint8_t)((v >> 24) & 0xFF);
b->data[b->len++] = (uint8_t)((v >> 16) & 0xFF);
b->data[b->len++] = (uint8_t)((v >> 8) & 0xFF);
b->data[b->len++] = (uint8_t)(v & 0xFF);
}
static void buf_append(buf *b, const uint8_t *data, size_t n) {
buf_reserve(b, n);
memcpy(b->data + b->len, data, n);
b->len += n;
}
// ---------------------------------------------------------------------------
// NBT helpers
// ---------------------------------------------------------------------------
enum {
TAG_END = 0,
TAG_BYTE = 1,
TAG_INT = 3,
TAG_LONG = 4,
TAG_STRING = 8,
TAG_LIST = 9,
TAG_COMPOUND = 10,
TAG_INT_ARRAY = 11,
TAG_LONG_ARRAY = 12
};
static void nbt_write_string(buf *b, const char *s) {
size_t len = strlen(s);
if (len > 0xFFFF) len = 0xFFFF;
buf_put_be16(b, (uint16_t)len);
buf_append(b, (const uint8_t *)s, len);
}
static void nbt_write_tag_header(buf *b, uint8_t tag, const char *name) {
buf_put_u8(b, tag);
nbt_write_string(b, name);
}
static void nbt_write_byte(buf *b, const char *name, uint8_t value) {
nbt_write_tag_header(b, TAG_BYTE, name);
buf_put_u8(b, value);
}
static void nbt_write_int(buf *b, const char *name, int32_t value) {
nbt_write_tag_header(b, TAG_INT, name);
buf_put_be32(b, (uint32_t)value);
}
static void nbt_write_long(buf *b, const char *name, int64_t value) {
nbt_write_tag_header(b, TAG_LONG, name);
buf_put_be64(b, (uint64_t)value);
}
static void nbt_write_string_tag(buf *b, const char *name, const char *value) {
nbt_write_tag_header(b, TAG_STRING, name);
nbt_write_string(b, value);
}
static void nbt_write_int_array(buf *b, const char *name, const int32_t *vals, size_t count) {
nbt_write_tag_header(b, TAG_INT_ARRAY, name);
buf_put_be32(b, (uint32_t)count);
for (size_t i = 0; i < count; ++i) {
buf_put_be32(b, (uint32_t)vals[i]);
}
}
static void nbt_write_long_array(buf *b, const char *name, const int64_t *vals, size_t count) {
nbt_write_tag_header(b, TAG_LONG_ARRAY, name);
buf_put_be32(b, (uint32_t)count);
for (size_t i = 0; i < count; ++i) {
buf_put_be64(b, (uint64_t)vals[i]);
}
}
static void nbt_start_compound(buf *b, const char *name) {
nbt_write_tag_header(b, TAG_COMPOUND, name);
}
static void nbt_end_compound(buf *b) {
buf_put_u8(b, TAG_END);
}
static void nbt_start_list(buf *b, const char *name, uint8_t tag_type, int32_t length) {
nbt_write_tag_header(b, TAG_LIST, name);
buf_put_u8(b, tag_type);
buf_put_be32(b, (uint32_t)length);
}
// ---------------------------------------------------------------------------
// Bit packing helpers
// ---------------------------------------------------------------------------
static int64_t to_signed64(uint64_t v) {
if (v <= INT64_MAX) return (int64_t)v;
return -(int64_t)((~v) + 1);
}
static void pack_bits(const uint16_t *indices, size_t count, int bits_per_value, int64_t *out_longs, size_t out_count) {
memset(out_longs, 0, out_count * sizeof(int64_t));
for (size_t idx = 0; idx < count; ++idx) {
uint64_t value = indices[idx];
size_t bit_index = idx * (size_t)bits_per_value;
size_t long_id = bit_index / 64;
size_t offset = bit_index % 64;
uint64_t *target = (uint64_t *)&out_longs[long_id];
*target |= value << offset;
int spill = (int)(offset + bits_per_value - 64);
if (spill > 0 && long_id + 1 < out_count) {
uint64_t *next = (uint64_t *)&out_longs[long_id + 1];
*next |= value >> (bits_per_value - spill);
}
}
}
// ---------------------------------------------------------------------------
// Chunk -> NBT helpers
// ---------------------------------------------------------------------------
static void pack_heightmap(const chunk_data *chunk, int64_t *out_longs, size_t out_count) {
uint16_t values[CHUNK_SIZE * CHUNK_SIZE];
for (int z = 0; z < CHUNK_SIZE; ++z) {
for (int x = 0; x < CHUNK_SIZE; ++x) {
values[x + z * CHUNK_SIZE] = chunk->heightmap[x][z];
}
}
pack_bits(values, CHUNK_SIZE * CHUNK_SIZE, 9, out_longs, out_count);
for (size_t i = 0; i < out_count; ++i) {
out_longs[i] = to_signed64((uint64_t)out_longs[i]);
}
}
static int section_has_blocks(const chunk_data *chunk, int section_y) {
int y_base = section_y * 16;
for (int y = 0; y < 16; ++y) {
int gy = y_base + y;
if (gy >= CHUNK_HEIGHT) break;
for (int x = 0; x < CHUNK_SIZE; ++x) {
for (int z = 0; z < CHUNK_SIZE; ++z) {
if (chunk->blocks[gy][x][z] != BLOCK_AIR) {
return 1;
}
}
}
}
return 0;
}
static void write_palette_entry(buf *b, const block_state *state) {
nbt_write_string_tag(b, "Name", state->name);
if (state->prop_count > 0) {
nbt_start_compound(b, "Properties");
for (size_t i = 0; i < state->prop_count; ++i) {
nbt_write_string_tag(b, state->props[i].key, state->props[i].value);
}
nbt_end_compound(b);
}
buf_put_u8(b, TAG_END); // end of this palette entry compound
}
static void write_section(buf *b, const chunk_data *chunk, int section_y) {
int palette_index[16];
for (size_t i = 0; i < 16; ++i) palette_index[i] = -1;
const block_state *palette_states[16];
uint16_t block_indices[4096];
size_t palette_len = 0;
int y_base = section_y * 16;
int idx = 0;
for (int y = 0; y < 16; ++y) {
int gy = y_base + y;
if (gy >= CHUNK_HEIGHT) break;
for (int z = 0; z < CHUNK_SIZE; ++z) {
for (int x = 0; x < CHUNK_SIZE; ++x) {
uint16_t bid = chunk->blocks[gy][x][z];
if (palette_index[bid] == -1) {
palette_index[bid] = (int)palette_len;
palette_states[palette_len] = get_block_state(bid);
palette_len++;
}
block_indices[idx++] = (uint16_t)palette_index[bid];
}
}
}
int bits = 4;
if (palette_len > 1) {
int needed = (int)ceil(log2((double)palette_len));
if (needed > bits) bits = needed;
}
size_t packed_count = ((size_t)idx * (size_t)bits + 63) / 64;
int64_t *packed = (int64_t *)calloc(packed_count, sizeof(int64_t));
if (!packed) return;
pack_bits(block_indices, idx, bits, packed, packed_count);
nbt_write_byte(b, "Y", (uint8_t)section_y);
nbt_write_long_array(b, "BlockStates", packed, packed_count);
nbt_start_list(b, "Palette", TAG_COMPOUND, (int32_t)palette_len);
for (size_t i = 0; i < palette_len; ++i) {
write_palette_entry(b, palette_states[i]);
}
// Palette entries already include their end tags; list is fixed-length so no end marker here.
// Lighting arrays (all zero)
uint8_t light[2048];
memset(light, 0, sizeof(light));
nbt_write_tag_header(b, 7, "BlockLight");
buf_put_be32(b, (uint32_t)sizeof(light));
buf_append(b, light, sizeof(light));
nbt_write_tag_header(b, 7, "SkyLight");
buf_put_be32(b, (uint32_t)sizeof(light));
buf_append(b, light, sizeof(light));
nbt_end_compound(b);
free(packed);
}
static void build_chunk_nbt(const chunk_data *chunk, buf *out) {
int32_t biomes[256];
for (int i = 0; i < 256; ++i) biomes[i] = 1; // Plains biome
int64_t heightmap[36];
pack_heightmap(chunk, heightmap, 36);
nbt_start_compound(out, "");
nbt_write_int(out, "DataVersion", 2586);
nbt_start_compound(out, "Level");
nbt_write_string_tag(out, "Status", "full");
nbt_write_long(out, "InhabitedTime", 0);
nbt_write_long(out, "LastUpdate", 0);
nbt_write_int(out, "xPos", chunk->chunk_x);
nbt_write_int(out, "zPos", chunk->chunk_z);
nbt_write_byte(out, "isLightOn", 1);
nbt_start_compound(out, "Heightmaps");
nbt_write_long_array(out, "MOTION_BLOCKING", heightmap, 36);
nbt_end_compound(out);
nbt_write_int_array(out, "Biomes", biomes, 256);
// Sections
int section_count = 0;
for (int sy = 0; sy < CHUNK_HEIGHT / 16; ++sy) {
if (section_has_blocks(chunk, sy)) section_count++;
}
nbt_start_list(out, "Sections", TAG_COMPOUND, section_count);
for (int sy = 0; sy < CHUNK_HEIGHT / 16; ++sy) {
if (!section_has_blocks(chunk, sy)) continue;
write_section(out, chunk, sy);
}
// Empty entity lists
nbt_start_list(out, "Entities", TAG_COMPOUND, 0);
nbt_start_list(out, "TileEntities", TAG_COMPOUND, 0);
nbt_start_list(out, "TileTicks", TAG_COMPOUND, 0);
nbt_end_compound(out); // Level
nbt_end_compound(out); // root
}
static int compress_chunk(const buf *input, buf *output) {
uLongf bound = compressBound((uLong)input->len);
buf_reserve(output, bound);
uLongf dest_len = (uLongf)output->cap;
int res = compress2(output->data, &dest_len, input->data, (uLong)input->len, Z_BEST_SPEED);
if (res != Z_OK) return -1;
output->len = dest_len;
return 0;
}
// ---------------------------------------------------------------------------
// Region file aggregation
// ---------------------------------------------------------------------------
typedef struct {
uint8_t *data;
size_t size;
} chunk_blob;
typedef struct {
int region_x;
int region_z;
chunk_blob chunks[32 * 32];
uint8_t present[32 * 32];
} region_accum;
static region_accum *find_or_add_region(region_accum **list, size_t *count, size_t *cap, int rx, int rz) {
for (size_t i = 0; i < *count; ++i) {
if ((*list)[i].region_x == rx && (*list)[i].region_z == rz) return &(*list)[i];
}
if (*count >= *cap) {
size_t new_cap = *cap ? *cap * 2 : 8;
region_accum *new_list = (region_accum *)realloc(*list, new_cap * sizeof(region_accum));
if (!new_list) return NULL;
*list = new_list;
*cap = new_cap;
}
region_accum *reg = &(*list)[(*count)++];
memset(reg, 0, sizeof(*reg));
reg->region_x = rx;
reg->region_z = rz;
return reg;
}
static void free_regions(region_accum *regions, size_t count) {
for (size_t i = 0; i < count; ++i) {
for (int j = 0; j < 32 * 32; ++j) {
free(regions[i].chunks[j].data);
}
}
free(regions);
}
static void write_region_file(const char *out_dir, const region_accum *reg) {
uint8_t offsets[4096];
uint8_t timestamps[4096];
memset(offsets, 0, sizeof(offsets));
memset(timestamps, 0, sizeof(timestamps));
buf body = {0};
uint32_t sector = 2;
time_t now = time(NULL);
for (int idx = 0; idx < 32 * 32; ++idx) {
if (!reg->present[idx]) continue;
const chunk_blob *cb = &reg->chunks[idx];
if (!cb->data || cb->size == 0) continue;
uint32_t length = (uint32_t)(cb->size + 1);
uint32_t padding = (4096 - ((length + 4) % 4096)) % 4096;
uint32_t total_len = length + 4 + padding;
uint32_t sectors = total_len / 4096;
// offsets
offsets[idx * 4 + 0] = (uint8_t)((sector >> 16) & 0xFF);
offsets[idx * 4 + 1] = (uint8_t)((sector >> 8) & 0xFF);
offsets[idx * 4 + 2] = (uint8_t)(sector & 0xFF);
offsets[idx * 4 + 3] = (uint8_t)sectors;
// timestamps
uint32_t ts = (uint32_t)now;
timestamps[idx * 4 + 0] = (uint8_t)((ts >> 24) & 0xFF);
timestamps[idx * 4 + 1] = (uint8_t)((ts >> 16) & 0xFF);
timestamps[idx * 4 + 2] = (uint8_t)((ts >> 8) & 0xFF);
timestamps[idx * 4 + 3] = (uint8_t)(ts & 0xFF);
// payload: length (4 bytes), compression type (1), data, padding
buf_reserve(&body, total_len);
buf_put_be32(&body, length);
buf_put_u8(&body, 2); // compression type 2 = zlib
buf_append(&body, cb->data, cb->size);
if (padding) {
uint8_t zeros[4096] = {0};
buf_append(&body, zeros, padding);
}
sector += sectors;
}
buf file = {0};
buf_reserve(&file, 4096 * 2 + body.len);
buf_append(&file, offsets, sizeof(offsets));
buf_append(&file, timestamps, sizeof(timestamps));
buf_append(&file, body.data, body.len);
char path[PATH_MAX];
snprintf(path, sizeof(path), "%s/r.%d.%d.mca", out_dir, reg->region_x, reg->region_z);
FILE *fp = fopen(path, "wb");
if (fp) {
fwrite(file.data, 1, file.len, fp);
fclose(fp);
} else {
fprintf(stderr, "Failed to write region %s\n", path);
}
free(file.data);
free(body.data);
}
static void write_regions(const char *out_dir, region_accum *regions, size_t region_count) {
for (size_t i = 0; i < region_count; ++i) {
write_region_file(out_dir, &regions[i]);
}
}
static void usage(const char *prog) {
fprintf(stderr,
"Usage: %s [--radius R] [--center-x X --center-z Z] [--min-x MX --max-x MX --min-z MZ --max-z MZ]\n"
" [--threads N] [--seed S] [--sea-level L] [--snow-line H] [--format mca|bin] [--trails] [--out DIR]\n",
prog);
}
static long parse_long(const char *s) {
char *end = NULL;
errno = 0;
long v = strtol(s, &end, 10);
if (errno != 0 || !end || *end != '\0') {
fprintf(stderr, "Invalid number: %s\n", s);
exit(1);
}
return v;
}
static int ensure_dir(const char *path) {
char tmp[PATH_MAX];
size_t len = strlen(path);
if (len == 0 || len >= sizeof(tmp)) return -1;
strcpy(tmp, path);
for (size_t i = 1; i <= len; ++i) {
if (tmp[i] == '/' || tmp[i] == '\0') {
char saved = tmp[i];
tmp[i] = '\0';
if (strlen(tmp) > 0) {
if (mkdir(tmp, 0777) != 0 && errno != EEXIST) {
if (errno != EEXIST) return -1;
}
}
tmp[i] = saved;
}
}
return 0;
}
static void write_chunk_file(const char *out_dir, const chunk_data *chunk) {
char path[PATH_MAX];
snprintf(path, sizeof(path), "%s/chunk_%d_%d.bin", out_dir, chunk->chunk_x, chunk->chunk_z);
FILE *fp = fopen(path, "wb");
if (!fp) {
fprintf(stderr, "Failed to open %s: %s\n", path, strerror(errno));
return;
}
int32_t header[2] = {chunk->chunk_x, chunk->chunk_z};
fwrite(header, sizeof(header[0]), 2, fp);
fwrite(chunk->heightmap, sizeof(uint16_t), CHUNK_SIZE * CHUNK_SIZE, fp);
fwrite(chunk->blocks, sizeof(uint16_t), CHUNK_HEIGHT * CHUNK_SIZE * CHUNK_SIZE, fp);
fclose(fp);
}
static chunk_coord *build_job_list(int min_x, int max_x, int min_z, int max_z, size_t *out_count) {
if (min_x > max_x || min_z > max_z) return NULL;
size_t count = (size_t)(max_x - min_x + 1) * (size_t)(max_z - min_z + 1);
chunk_coord *jobs = (chunk_coord *)malloc(count * sizeof(chunk_coord));
if (!jobs) return NULL;
size_t idx = 0;
for (int x = min_x; x <= max_x; ++x) {
for (int z = min_z; z <= max_z; ++z) {
jobs[idx].x = x;
jobs[idx].z = z;
++idx;
}
}
*out_count = count;
return jobs;
}
static void *worker_fn(void *ptr) {
worker_args *args = (worker_args *)ptr;
worldgen_ctx ctx;
worldgen_init(&ctx, args->world_seed, args->sea_level, args->snow_line);
ctx.enable_trails = args->enable_trails;
while (1) {
size_t idx = atomic_fetch_add(&args->queue->next_index, 1);
if (idx >= args->queue->count) break;
chunk_coord job = args->queue->items[idx];
chunk_data chunk;
worldgen_generate_chunk(&ctx, job.x, job.z, &chunk);
if (args->results) {
pthread_mutex_lock(&args->results->mutex);
size_t result_idx = atomic_fetch_add(&args->results->count, 1);
if (result_idx < args->results->capacity) {
args->results->chunks[result_idx].chunk_x = chunk.chunk_x;
args->results->chunks[result_idx].chunk_z = chunk.chunk_z;
memcpy(&args->results->chunks[result_idx].data, &chunk, sizeof(chunk_data));
}
pthread_mutex_unlock(&args->results->mutex);
} else {
write_chunk_file(args->out_dir, &chunk);
}
size_t done_now = atomic_fetch_add(&args->queue->done, 1) + 1;
if (args->log_mu) {
pthread_mutex_lock(args->log_mu);
double pct = (double)done_now * 100.0 / (double)args->queue->count;
fprintf(stderr, "\rProgress: %zu/%zu (%.1f%%) last (%d,%d)", done_now, args->queue->count, pct, job.x, job.z);
fflush(stderr);
pthread_mutex_unlock(args->log_mu);
}
}
return NULL;
}
int main(int argc, char **argv) {
int have_rect = 0;
int min_x = 0, max_x = 0, min_z = 0, max_z = 0;
int center_x = 0, center_z = 0;
int radius = 1;
int threads = (int)sysconf(_SC_NPROCESSORS_ONLN);
if (threads < 1) threads = 4;
int world_seed = 123456;
int sea_level = 70;
int snow_line = INT_MIN;
int enable_trails = 0;
const char *out_dir = "output";
output_format format = FORMAT_MCA;
for (int i = 1; i < argc; ++i) {
if (strcmp(argv[i], "--radius") == 0 && i + 1 < argc) {
radius = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--center-x") == 0 && i + 1 < argc) {
center_x = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--center-z") == 0 && i + 1 < argc) {
center_z = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--min-x") == 0 && i + 1 < argc) {
min_x = (int)parse_long(argv[++i]);
have_rect = 1;
} else if (strcmp(argv[i], "--max-x") == 0 && i + 1 < argc) {
max_x = (int)parse_long(argv[++i]);
have_rect = 1;
} else if (strcmp(argv[i], "--min-z") == 0 && i + 1 < argc) {
min_z = (int)parse_long(argv[++i]);
have_rect = 1;
} else if (strcmp(argv[i], "--max-z") == 0 && i + 1 < argc) {
max_z = (int)parse_long(argv[++i]);
have_rect = 1;
} else if (strcmp(argv[i], "--threads") == 0 && i + 1 < argc) {
threads = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--seed") == 0 && i + 1 < argc) {
world_seed = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--sea-level") == 0 && i + 1 < argc) {
sea_level = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--snow-line") == 0 && i + 1 < argc) {
snow_line = (int)parse_long(argv[++i]);
} else if (strcmp(argv[i], "--format") == 0 && i + 1 < argc) {
const char *f = argv[++i];
if (strcmp(f, "mca") == 0) {
format = FORMAT_MCA;
} else if (strcmp(f, "bin") == 0) {
format = FORMAT_BIN;
} else {
fprintf(stderr, "Unknown format: %s (use mca or bin)\n", f);
return 1;
}
} else if (strcmp(argv[i], "--trails") == 0) {
enable_trails = 1;
} else if ((strcmp(argv[i], "--out") == 0 || strcmp(argv[i], "--output") == 0) && i + 1 < argc) {
out_dir = argv[++i];
} else if (strcmp(argv[i], "--help") == 0) {
usage(argv[0]);
return 0;
} else {
fprintf(stderr, "Unknown argument: %s\n", argv[i]);
usage(argv[0]);
return 1;
}
}
if (snow_line == INT_MIN) {
snow_line = sea_level + 38;
}
if (!have_rect) {
min_x = center_x - radius;
max_x = center_x + radius;
min_z = center_z - radius;
max_z = center_z + radius;
}
if (ensure_dir(out_dir) != 0) {
fprintf(stderr, "Failed to create output directory: %s\n", out_dir);
return 1;
}
size_t job_count = 0;
chunk_coord *jobs = build_job_list(min_x, max_x, min_z, max_z, &job_count);
if (!jobs || job_count == 0) {
fprintf(stderr, "No chunks to generate.\n");
free(jobs);
return 1;
}
job_queue queue = {.items = jobs, .count = job_count, .next_index = 0};
atomic_init(&queue.done, 0);
pthread_mutex_t log_mu = PTHREAD_MUTEX_INITIALIZER;
results_buffer results;
results.chunks = (completed_chunk *)malloc(sizeof(completed_chunk) * job_count);
results.capacity = job_count;
atomic_init(&results.count, 0);
results.mutex = (pthread_mutex_t)PTHREAD_MUTEX_INITIALIZER;
if (threads < 1) threads = 1;
pthread_t *workers = (pthread_t *)malloc(sizeof(pthread_t) * (size_t)threads);
if (!workers) {
fprintf(stderr, "Failed to allocate threads array.\n");
free(results.chunks);
free(jobs);
return 1;
}
worker_args args = {
.queue = &queue,
.out_dir = out_dir,
.world_seed = world_seed,
.sea_level = sea_level,
.snow_line = snow_line,
.log_mu = &log_mu,
.enable_trails = enable_trails,
.results = &results};
for (int i = 0; i < threads; ++i) {
pthread_create(&workers[i], NULL, worker_fn, &args);
}
for (int i = 0; i < threads; ++i) {
pthread_join(workers[i], NULL);
}
fprintf(stderr, "\n");
size_t completed = atomic_load(&results.count);
if (format == FORMAT_BIN) {
for (size_t i = 0; i < completed; ++i) {
write_chunk_file(out_dir, &results.chunks[i].data);
}
fprintf(stdout, "Generated %zu chunk(s) into %s (raw bin) using %d thread(s).\n", completed, out_dir, threads);
} else {
region_accum *regions = NULL;
size_t region_count = 0, region_cap = 0;
for (size_t i = 0; i < completed; ++i) {
const completed_chunk *cc = &results.chunks[i];
buf nbt = {0};
build_chunk_nbt(&cc->data, &nbt);
buf compressed = {0};
if (compress_chunk(&nbt, &compressed) != 0) {
free(nbt.data);
free(compressed.data);
continue;
}
free(nbt.data);
int cx = cc->chunk_x;
int cz = cc->chunk_z;
int region_x = (cx >= 0) ? cx / 32 : ((cx - 31) / 32);
int region_z = (cz >= 0) ? cz / 32 : ((cz - 31) / 32);
int local_x = cx - region_x * 32;
int local_z = cz - region_z * 32;
int index = local_x + local_z * 32;
region_accum *reg = find_or_add_region(&regions, &region_count, &region_cap, region_x, region_z);
if (!reg) {
free(compressed.data);
continue;
}
if (reg->present[index]) {
free(reg->chunks[index].data);
}
reg->present[index] = 1;
reg->chunks[index].data = compressed.data;
reg->chunks[index].size = compressed.len;
}
write_regions(out_dir, regions, region_count);
free_regions(regions, region_count);
fprintf(stdout, "Generated %zu chunk(s) into %s (MCA) using %d thread(s).\n", completed, out_dir, threads);
}
free(results.chunks);
free(workers);
free(jobs);
return 0;
}

180
worldgen-c/src/noise.c Normal file
View File

@@ -0,0 +1,180 @@
#include "noise.h"
#include <math.h>
#include <stddef.h>
// Simplex noise implementation (Stefan Gustavson public domain style).
// Enough for terrain-like smooth noise; deterministic per seed.
static const int grad3[12][3] = {
{1, 1, 0}, {-1, 1, 0}, {1, -1, 0}, {-1, -1, 0},
{1, 0, 1}, {-1, 0, 1}, {1, 0, -1}, {-1, 0, -1},
{0, 1, 1}, {0, -1, 1}, {0, 1, -1}, {0, -1, -1}
};
static double dot(const int *g, double x, double y) {
return g[0] * x + g[1] * y;
}
static double dot3(const int *g, double x, double y, double z) {
return g[0] * x + g[1] * y + g[2] * z;
}
static uint32_t lcg(uint32_t seed) {
return seed * 1664525u + 1013904223u;
}
void simplex_init(simplex_noise *noise, uint32_t seed) {
for (int i = 0; i < 256; ++i) {
noise->perm[i] = i;
}
uint32_t s = seed;
for (int i = 255; i > 0; --i) {
s = lcg(s);
int j = (s + 31) % (i + 1);
int tmp = noise->perm[i];
noise->perm[i] = noise->perm[j];
noise->perm[j] = tmp;
}
for (int i = 0; i < 256; ++i) {
noise->perm[256 + i] = noise->perm[i];
}
}
double simplex_noise2(simplex_noise *noise, double xin, double yin) {
const double F2 = 0.5 * (sqrt(3.0) - 1.0);
const double G2 = (3.0 - sqrt(3.0)) / 6.0;
double s = (xin + yin) * F2;
int i = (int)floor(xin + s);
int j = (int)floor(yin + s);
double t = (i + j) * G2;
double X0 = i - t;
double Y0 = j - t;
double x0 = xin - X0;
double y0 = yin - Y0;
int i1, j1;
if (x0 > y0) {
i1 = 1; j1 = 0;
} else {
i1 = 0; j1 = 1;
}
double x1 = x0 - i1 + G2;
double y1 = y0 - j1 + G2;
double x2 = x0 - 1.0 + 2.0 * G2;
double y2 = y0 - 1.0 + 2.0 * G2;
int ii = i & 255;
int jj = j & 255;
int gi0 = noise->perm[ii + noise->perm[jj]] % 12;
int gi1 = noise->perm[ii + i1 + noise->perm[jj + j1]] % 12;
int gi2 = noise->perm[ii + 1 + noise->perm[jj + 1]] % 12;
double n0 = 0.0, n1 = 0.0, n2 = 0.0;
double t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 > 0) {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0);
}
double t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 > 0) {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 > 0) {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
return 70.0 * (n0 + n1 + n2);
}
double simplex_noise3(simplex_noise *noise, double xin, double yin, double zin) {
const double F3 = 1.0 / 3.0;
const double G3 = 1.0 / 6.0;
double s = (xin + yin + zin) * F3;
int i = (int)floor(xin + s);
int j = (int)floor(yin + s);
int k = (int)floor(zin + s);
double t = (i + j + k) * G3;
double X0 = i - t;
double Y0 = j - t;
double Z0 = k - t;
double x0 = xin - X0;
double y0 = yin - Y0;
double z0 = zin - Z0;
int i1, j1, k1;
int i2, j2, k2;
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1; j1 = 0; k1 = 0;
i2 = 1; j2 = 1; k2 = 0;
} else if (x0 >= z0) {
i1 = 1; j1 = 0; k1 = 0;
i2 = 1; j2 = 0; k2 = 1;
} else {
i1 = 0; j1 = 0; k1 = 1;
i2 = 1; j2 = 0; k2 = 1;
}
} else {
if (y0 < z0) {
i1 = 0; j1 = 0; k1 = 1;
i2 = 0; j2 = 1; k2 = 1;
} else if (x0 < z0) {
i1 = 0; j1 = 1; k1 = 0;
i2 = 0; j2 = 1; k2 = 1;
} else {
i1 = 0; j1 = 1; k1 = 0;
i2 = 1; j2 = 1; k2 = 0;
}
}
double x1 = x0 - i1 + G3;
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
double x2 = x0 - i2 + 2.0 * G3;
double y2 = y0 - j2 + 2.0 * G3;
double z2 = z0 - k2 + 2.0 * G3;
double x3 = x0 - 1.0 + 3.0 * G3;
double y3 = y0 - 1.0 + 3.0 * G3;
double z3 = z0 - 1.0 + 3.0 * G3;
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = noise->perm[ii + noise->perm[jj + noise->perm[kk]]] % 12;
int gi1 = noise->perm[ii + i1 + noise->perm[jj + j1 + noise->perm[kk + k1]]] % 12;
int gi2 = noise->perm[ii + i2 + noise->perm[jj + j2 + noise->perm[kk + k2]]] % 12;
int gi3 = noise->perm[ii + 1 + noise->perm[jj + 1 + noise->perm[kk + 1]]] % 12;
double n0 = 0.0, n1 = 0.0, n2 = 0.0, n3 = 0.0;
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 > 0) {
t0 *= t0;
n0 = t0 * t0 * dot3(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 > 0) {
t1 *= t1;
n1 = t1 * t1 * dot3(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 > 0) {
t2 *= t2;
n2 = t2 * t2 * dot3(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 > 0) {
t3 *= t3;
n3 = t3 * t3 * dot3(grad3[gi3], x3, y3, z3);
}
return 32.0 * (n0 + n1 + n2 + n3);
}

1839
worldgen-c/src/worldgen.c Normal file

File diff suppressed because it is too large Load Diff